COMPUTER NUMERICAL MODELING OF LOCAL HEAT TRANSFER ON THE SURFACE OF COMPACT CROSS FLOWED SMOOTH TUBE BANKS
Abstract
In this article presents results of mathematics modeling of processes of heat transfer for smooth tube banks, which get a broad distribution in ship energetics, in many heat exchangers. At this the main role in learning physical mechanism of heat transfer of compact cross flowed tube banks presents investigations of local heat transfer on perimeter of separated tubes. In this paper, the computer numerical simulations of the process of hydrodynamic and heat transfer in the channels of compact cross flowed smooth tube banks without clearance between neighbor tubes in longitudinal rows, with the help of applied software ANSYS Fluent are realized. The dependence of the local distribution of heat transfer coefficient for the tubes circumference from the first to fourth transverse rows of the first section of tube bank for each of the five considered operating modes are obtained. Comparative analysis of obtained results with the results of known experimental investigation for smooth tube banks of inline and staggered arrangements are realized. The maximum values of specific coefficient of heat transfer for tubes from second to forth transverse rows αm/αср on segments of additional flow (at Re = 6044) high by 0,46 (29 %) maximum value αm/αср for tubes from third to seventh transverse rows of inline tubes banks and high by 0,30 (15 %) of tubes from third to seventh transverse rows of staggered tubes banks (at Re = 14000) are defined. At that in investigated bank maximum αm/αср twice above, which intensify of heat transfer process.
References
2. Pisjmennihyj E. N. (2004). Teploobmen i aehrodinamika paketov poperechno-orebrennihkh trub. K. : Aljterpres.
3. Zhukauskas A., Makaryavichyus V. & Shlanchyauskas A. (1968). Teplootdacha puchkov trub v poperechnom potoke zhidkosti. Viljnyus : Mintis.
4. Zhukauskas A. A. (1982). Konvektivnihyj perenos v teploobmennikakh. M. : Nauka.
5. Zukauskas A. (1982). Problemof heat transfer augmentation for tube banks in cross flow. Heat Exchangers. New York, 1–21.
6. Zhukauskas A., Ulinskas R. (1986). Teplootdacha poperechno obtekaemihkh puchkov trub. Viljnyus : Mokslas.
7. Aiba S., Ota T. & Tsuchida M. (1980). Heat transfer of tubes closely spaced in an in-line bank. Int. J. of Heat and Mass Transfer, 21, 311–319
8. Aiba S. (1990). Heat transfer around a tube in in-line tube banks near a plane wall. J. of Heat Transfer, 112, 933–938
9. Pronin V. A. (2008). Komponovki trubnihkh puchkov i sintez konvektivnihkh poverkhnosteyj teploobmena s povihshennoyj ehnergoehffektivnostjyu. Extended abstract of candidate’s thesis. M., Moskovskiyj ehnergeticheskiyj institut.
10. Gorobec V. G., Panin V. V., Bogdan Yu. O. & Trokhanyak V. I. (2015). Vliyanie geometrii kompaktnogo poperechnogo obtekaemogo gladkotrubnogo puchka na ego pokazateli Vodniyj transport, 1 (22), 6–13.
11. Loyjcyansjkiyj L. G. (2003). Mekhanika zhidkosti i gaza. M. : Drofa.
12. ANSYS FLUENT Theory Guide. (2011) Release 14. ANSYS, Inc. Southpointe 275 Technology Drive Canonsburg, PA 15317.
13. Lewis R. W., Nithiarasu P. & Seetharamu K. N. (2004). Fundamentals of the Finite Element Method for Heat and Fluid Flow. The Atrium, Southern Gate, Chichester, West Sussex Po19 8SQ, England: John Wiley & Sons Ltd.
14. Kulinchenko V. R. (1990). Spravochnik po teploobmennihm raschetam K. : Tekhnіka.
15. Belov I. A. & Kudryavcev N. A. (1987). Teplootdacha i soprotivlenie paketa trub L. : Ehnergoatomizdat.