NAVIGATION SYSTEM FOR GUARANTEED SAFE MANEUVERING CONTROL OF SHIPS WITHOUT A CREW
10.33815/2313-4763.2021.1.24.038–056
Abstract
It consists in creating a navigation device for planning a given path along waypoints with the coordinates of trajectory points in the form of the sum of matrices of straight and curved path segments and operational control of the parameters of maneuvering of the characteristic points of the vessel. Waypoint coordinates are determined at the intersection of straight segments of the recommended safe straight-line path on the map. An urgent problem is the development of new methods for planning the path and controlling movement along it, taking into account the water area for maneuvering, the maneuvering properties of the vessel and external influences for the timely detection of deviations from the planned parameters. Methods: Calculation of the plane coordinates is performed for the center of gravity of the vessel for the characteristic points of the movement path - the beginning of the turn, the end of the turn, the beginning of braking and the trajectory points of rectilinear sections of the path through 0.2 kbt and curved sections through 1,5 or 10 degrees, depending on the map scale and the angle of rotation. The coordinates of a given path are drawn up in the form of a sum of linear matrices of rectilinear and curved path sections. The navigation system of motion control consists of devices for automatically determining deviations from the planned coordinates and
decision support systems to correct the emerging deviations. Results: The study of the proposed method of planning and traffic control was carried out by means of computer modeling and verification in natural conditions, the results of which showed that the calculated optimal specified trajectory provides guidance of the center of gravity along a given path by the ship's controls and meets the established optimality criteria. Discussion: The main advantage of the method of planning the path of the ship's movement according to the table of waypoints is by calculating the coordinates of the trajectory points along rudder shift angle for curvilinear trajectories, representation of the path in the form of a sum of linear matrices of coordinates of straight and curved linear sections and automatic operational control of motion parameters. The proposed method can be used in the development of controls for automated vessels without watch keeping.
References
2. Maltsev A. S., Benj A. P. (2019). Sistemih prinyatiya resheniyj po upravleniyu dvizheniem sudna : monografiya. Kherson : KhGMA.
3. Maltsev A. S., Golikov V. V., Safin I. V. & Mamontov V. V. (2013). Metodologicheskie osnovih manevrirovaniya sudov pri sblizhenii. Odessa : ONMA.
4. Viljskiyj G. B, Maltsev A. S., Bezdoljnihyj V. V. & Goncharov E. I. (2007). Navigacionnaya bezopasnostj pri locmanskoyj provodke sudov / A. S. Maljceva, G. B. Viljskogo (Ed). Odessa-Nikolaev : Feniks.
5. Maltsev S. Eh., Tovstokorihyj O. N. (2016). Polyus povorota i ego uchet pri manevrirovanii morskogo sudna : monografiya. Kherson : KhGMA.
6. Maltsev S. E. (2018). Kognitivnaya sistema ocenki polozheniya polyusa povorota sudna s pomothjyu ehffektivnihkh algoritmov. Eastern-European Journal of Enterprise Technologies. Natural and Technical Sciences. 1 (19), Is. 171, 37–42.
7. Maltsev S. E. (2019). Navihatsiinyi prystrii pidtrymky pryiniattia rishennia pry avtomatychnomu planuvanni rukhu sudna traiektornymy tochkamy pry zakhodi/vykhodi iz portu. Eastern-European Journal of Enterprise Technologies. Natural and Technical Sciences. 11 (25), Is. 206, 41–46.
8. A. s. na kompiuternu prohramu 68552 Ukraina. Systema vysokotochnoho planuvannia shliakhu perekhodu morskoho sudna / A. S. Maltsev, A. P. Ben, O. V. Tereshchenkova, V. I. Sokolenko (Ukraina). # 68552 ; opubl. 09.11.16.
9. Navihatsiinyi prystrii dlia vyboru vydu vektoru upravlinnia rukhom : pat. 111646 Ukraina. MPK (2016.01) G08G 3/00. # u 2016 02487; zaiavl. 14.03.2016; opubl. 25.11.2016, Biul. # 22.
10. Sposib informatsiinoho zabezpechennia manevruvannia morskoho sudna : pat. 100293 Ukraina. MPK G08G 3/00 (2015/01). # u 2014 12711; zaiavl. 26.11.2014; opubl. 27.07.2015, Biul. # 14.
11. Golikov V. V., Maljcev S. Eh. (2013). Algoritm opredeleniya polozheniya polyusa povorota morskogo sudna. Naukoviyj vіsnik Khersonsjkoy derzhavnoy morsjkoy akademіi : naukoviyj zhurnal. Kherson : KhGMA, 1 (8), 21–27.
12. Sokolenko Vasyliy. (2016). The system of precision planning marine ship’s voyage. Proceedings of National Aviation University. Kiev : NAU. 68, 3 (216), 46–53.
13. Sokolenko V. I. (2011). Sudovoyj plan locmanskoyj provodki. Sudovozhdenie : sb. nauchn. trudov / ONMA. Odessa : Izdat Inform, 20, 209–220.
14. Sokolenko V. I. (2012). Planirovanie zadannogo puti dvizheniya v stesnennihkh usloviyakh traektornihmi tochkami i kontrolj processa dvizheniya. Sudovozhdenie : sb. nauchn. trudov / ONMA. Odessa : «IzdatInform», 21, 220–227.
15. Snopkov V. I. (2004). Upravlenie sudnom. Sankt-Peterburg : Professional.
16. Maltsev A. S. (2020). Dynamichne pozytsionuvannia sudna pry vidkhylenniakh parametru upravlinnia, velychyna yakoho porivniana z pokhybkamy yoho vyznachennia.
Naukovyi visnyk Khersonskoi derzhavnoi morskoi akademii : naukovyi zhurnal. Kherson : Khersonska derzhavna morska akademiia, 1 (20), 44–54.
17. Golikov V. V., Maltsev S. E. (2015). Analiz vektora smetheniya puti sudna ot vetra. Naukoviyj vіsnik Khersonsjkoї derzhavnoї morsjkoї akademіi : naukoviyj zhurnal. Kherson : KSMA, 1 (12), 29–35.
18. Maltsev S. E. (2021). Operatyvnyi kontrol shyryny manevrenoho zsuvu v styslykh vodakh. Sudnovodinnia : zbirnyk naukovykh prats. NU «OMA». Odesa : Vydav Inform, 31,
22–37.
19. ND № 2-030101-037. Polozhennya po klassifikacii morskikh avtonomnihkh i distancionno upravlyaemihkh nadvodnihkh sudov (MANS). Sankt-Peterburg : Rosiyjskiyj morskoyj registr sudokhodstva, 2020