GENERATION OF NANO-FILLED EPOXY-POLYESTER COMPOSITE MATERIALS FOR PROTECTION OF ELEMENTS OF VESSEL TECHNICAL MEANS

10.33815/2313-4763.2020.1.22.154-162

Keywords: epoxy-polyester matrix, composite material, nanofillers, thermophysical properties, heat resistance (according to Martens), thermal coefficient of linear expansion, oxidized nanodisperse additive, pyrogenic silicon dioxide, binder

Abstract

The influence of nanofillers on thermophysical properties of epoxy-polyester composites has been investigated in the work. The filler content (oxidized nanodisperse additive and pyrogenic silicon dioxide) has been varied within q = 0.02…1.0 pts.wt. per 100 pts.wt. of epoxy oligomer ED-20. It has been discovered that the introduction of the oxidized nanodisperse additive in the amount of q = 0.05…0.08 pts.wt. into the epoxy-polyester binder leads to an improvement in the thermophysical properties of the composite. Value of heat resistance (according to Martens) increased from Т = 335 К (for the epoxy-polyester matrix) to T = 346 K at the content of oxidized nanodisperse additive of q = 0.075 pts.wt. Introduction of q = 0.05 pts.wt. of oxidized nanodisperse additive allows to obtain improved values of the temperature coefficient of linear expansion in different temperature ranges: in the region ΔT = 303…323 K – α = 1.0 × 10-5 K-1, in the region ΔT = 303… 373 K - α = 1.9 × 10-5 K-1, in the region ΔT = 303… 423 K – α = 3.4 × 10-5 K-1. It has been determined that the composite material has also improved its heat resistance (according to Martens), which is T = 347 K and the minimum thermal coefficient of linear expansion at the content of q = 0.05 pts.wt. of pyrogenic silicon dioxide nanofiller. Values of the temperature coefficient of linear expansion were: α = 1.0 × 10-5 K-1 in the region (ΔT = 303… 323 K), α = 1.9 × 10-5 K-1 (in the region ΔT = 303… 373 K), Δα = 3.4 ×× 10-5 K-1 (in the region ΔT = 303… 423 K), α = 8.4 × 10-5 K-1 (in the region ΔT = 303… 473 K). It is recommended that in order to form a composite material with improved thermophysical properties to protect the elements of ship technical equipment, it is advisable to introduce the pyrogenic silicon dioxide nanofiller in the amount of q = 0.05 pts.wt. into the epoxy-polyester binder.

References

1. Chen, X. (2019). Marine Transport Efficiency Evaluation of Cross-border E-commerce Logistics Based on Analytic Hierarchy Process. Journal of Coastal Research, 94(sp1), 682. https://doi.org/10.2112/SI94-135.1
2. Sui, C., Stapersma, D., Visser, K., de Vos, P., & Ding, Y. (2019). Energy effectiveness of ocean-going cargo ship under various operating conditions. Ocean Engineering, 190, 106473. https://doi.org/10.1016/j.oceaneng.2019.106473
3. Voznickij, I. V., & Punda, A. S. (2008). Sudovye dvigateli vnutrennego sgoraniya. M. : Morkniga, 1, 282.
4. Kerber, M. L., Vinogradov, V. M., & Golovkin, G. S. (2014). Polimernye kompozicionnye materialy: struktura, svojstva, tekhnologiya. COP «Professiya».
5. Buketov, A., Brailo, M., Yakushchenko, S., & Sapronova, A. (2018). Development of Epoxy-Polyester Composite with Improved Thermophysical Properties for Restoration of Details of Sea and River Transport. Advances in Materials Science and Engineering, 2018, 1–6. https://doi.org/10.1155/2018/6378782
6. Buketov, A. V, Brailo, M. V, Yakushchenko, S. V, Sapronov, O. O., & Smetankin, S. O. (2018). The formulation of epoxy-polyester matrix with improved physical and mechanical properties for restoration of means of sea and river transport. Journal of Marine Engineering & Technology, 1–6. https://doi.org/10.1080/20464177.2018.1530171
7. Salom, C., Prolongo, M. G., Toribio, A., Martínez-Martínez, A. J., de Cárcer, I. A., & Prolongo, S. G. (2018). Mechanical properties and adhesive behavior of epoxy-graphene nanocomposites. International Journal of Adhesion and Adhesives, 84, 119–125. https://doi.org/10.1016/j.ijadhadh.2017.12.004
8. Buketov, A. V, Sapronov, А. А., Buketova, N. N., Brailo, M. V, Marushak, P. О., Panin, S. V, & Amelin, M. Y. (2018). Impact toughness of nanocomposite materials filled with fullerene С60 particles. Composites: Mechanics, Computations, Applications: An International Journal, 9(2), 141–161. https://doi.org/10.1615/CompMechComputApplIntJ.v9.i2.30
9. Zahid, M., Heredia-Guerrero, J. A., Athanassiou, A., & Bayer, I. S. (2017). Robust water repellent treatment for woven cotton fabrics with eco-friendly polymers. Chemical Engineering Journal, 319, 321–332. https://doi.org/10.1016/j.cej.2017.03.006
10. Mostovoi, A. S., Yakovlev, E. A., Burmistrov, I. N., & Panova, L. G. (2015). Use of modified nanoparticles of potassium polytitanate and physical methods of modification of epoxy compositions for improving their operational properties. Russian Journal of Applied Chemistry, 88(1), 129–137. https://doi.org/10.1134/S107042721501019X
11. Szeluga, U., & Moryc, P. (2012). Curing of dicyanate ester/epoxy copolymers modified with polysiloxane and butadiene-acrylonitrile rubbers. Journal of Thermal Analysis and Calorimetry, 109(1), 73–80. https://doi.org/10.1007/s10973-011-1717-0
12. Jana, S., Sui, G., & Zhong, W. H. (2009). Mechanisms for the Improvement in Interfacial Adhesion Between UHMWPE Reinforcement and Nano-epoxy Resins with Reactive Graphitic Nanofibers. Journal of Adhesion Science and Technology, 23(9), 1281–1292. https://doi.org/10.1163/156856109X434008
13. Leonova, N. G., Mikhal’chuk, V. M., Mamunya, Y. P., Davydenko, V. V, & Iurzhenko, M. V. (2013). Thermophysical properties of epoxy-polysiloxane composites of cationic polymerization. Polymer Science Series D. Glues and Sealing Materials, 6(3), 210–217. https://doi.org/10.1134/S1995421213030131
14. Yacishin, O. І., Chervіns’kij, T. І., & Bratichak, M. M. (2012). Vivchennya strukturuvannya epoksidnoї smoli ED-20 u prisutnostі reakcіjnozdatnih olіgomerіv. Vіsnik Nacіonal’nogo Unіversitetu «L’vіvs’ka Polіtekhnіka», 726, 467–471.
Published
2020-10-05