ANALYSIS OF THE OPERATIONAL FAILURES REASONS OF MARINE DIESEL МАК М43 FUEL INJECTION PUMP DRIVE ELEMENTS

10.33815/2313-4763.2019.1.22.109-119

Keywords: marine diesel, fuel injection pump, fuel cam, excessive connections, contact stresses

Abstract

The aim of the study is to establish the possibility of reducing the sensitivity of the drive of a fuel injection pump (FIP) of a marine diesel engine to manufacturing and assembly errors due to the elimination of excess connections in its mechanism.The structure of the drive mechanism of the MAK M43 diesel engine FIP is analyzed, due to which it is established that due to imperfections in the drive design, namely the presence of excessive links in its mechanism, in the presence of a skew axis of the roller and the fuel cam, a load concentration occurs at the edge of the roller bearing sleeve, which causes its destruction. Excessive connections make it impossible to self-align the roller on the cam, as well as the uniform distribution of the load along the length of the bearing sleeve. As a result of a structural analysis of the injection pump drive mechanism, it is shown that it contains two redundant connections, both located in a circuit bounded by a lever, a roller and a fuel fist and represent rotation restrictions around the X and Y axes. Excessive connections are eliminated by adding two mobilities to the specified circuit, what can be achieved by fulfilling the rolling surface of a barrel-shaped roller (variant I), or by connecting the lever to the diesel unit due to the spherical support (variant II). It has been shown that by the optimal choice of the ratio of the radii of the roller and its barrel-shaped rolling surface, it is possible to achieve acceptable values of contact stresses in the “fuel fist-roller” pair, illustrating the reserves of the application of variant I for use on engines in operation. Variant II has a reserve for use in creating new diesel designs, since it requires a significant change in the design of the lever and its support. Directions for further research are proposed.

References

1. SagIn S. V. (2019). TeorIya i praktika energoperetvorennya na sudnah z minimalno neminuchimi nezvorotnimi vtratami: dis. ... d-ra tehn. nauk: spets. 05.22.20 – ekspluatatsiya ta remont zasobiv transportu; NatsIonalniy unIversitet «Odeska morska akademiya». Odesa : ONMA, 402 p.
2. Makushev Yu. P. Mihajlova L. Yu. (2008). Raschetnoe opredelenie racionalnoj komponovki privoda nasosa 6TN9×10T. Aktualnye problemy razvitiya i ekspluatacii porshnevyh dvigatelej v transportnom komplekse Aziatsko-Tihookeanskogo regiona. Habarovsk, 229–238.
3. Troickij A. V. (2010). Modelirovanie raboty toplivnogo nasosa vysokogo davleniya sudovogo dizelya s uchetom silovogo vzaimodejstviya ego elementov. Vestnik Astrahanskogo gosudarstvennogo tehnicheskogo universiteta. Morskaya tehnika i tehnologiya. Astrahan, 02, 129–133.
4. Zhuravlov Yu. I, Bogach Yu. M. (2017). Doslidzhennya vplivu energetichnih vitrat pri znoshuvanni v procesi ekspluataciyi spoluchen «val–pidshipnik kovzannya». Sudovye energeticheskie ustanovki: nauchno-tehnicheskij sbornik. Odesa : ONMA, 37, 62–73.
5. Reshetov L. N. (1991). Samoustanavlivayushiesya mehanizmy. Moscow : Mashinostroenie.
6. Pogrebnyak R. P. (2015). Structural analysis and rational design parallelogram arm gripping device. Teoriya i praktika metallurgii, 1-2, 123–125.
7. Pogrebnyak R. P. (2017). Strukturnij analiz ta kinematichnij sintez sparenogo strizhnovogo kulisnogo mehanizmu zahvata robota. Pidjomno-transportna tehnika. Odesa : Interprint, 57–66.
8. Atarer F., Korkmaz K., Kiper G. (2017). Design alternatives of network of Altmann linkages. International Journal of Computational Methods and Experimental Measurements, 5(4), 495–503.
9. Sydorenko I., Kravtsov E., Prokopovych I., Korolkova M., Dmitrieva S. (2019). Reducing the reliability of equipment as a result of the reduction of the culture of production. Praci Odeskogo politehnichnogo universitetu, Odesa : ONPU, 3 (59), 5–13.
10. Samojlenko L. K., Procenko V. O. (2010). Pro strukturu mehanizmu kolodkovogo galma i pidvishennya jogo nadijnosti. Naukovij visnik Hersonskogo derzhavnogo morskogo institutu. Kherson : HDMI, 2 (3), 211–216.
11. Procenko V. O., Samojlenko L. K., Babij M. V. (2016). Analiz vidmov ta napryamki udoskonalennya vidcentrovih muft separatoriv sudnovih energetichnih ustanovok. Pidjomno- transportna tehnika. Odesa : Interprint, 3, 59–71.
12. Frolov K. V. (2017). Teoriya mehanizmov i mehanika mashin. Moscow : Izd-vo MGTU im. N. E. Baumana.
13. Mashnev M. M., Kraskovskij E. Ya., Lebedev P. A. (1980). Teoriya mehanizmov i mashin i detali mashin. Leningrad : Mashinostroenie.
14. Starovojtov E.I. (2008) Soprotivlenie materialov. Moscow : Fizmatlit.
15. Pavlishe V. T., Harchenko Ye. V., Barvinskij A. F., Garshnyev Yu. G. (2004). Prikladna mehanika. Lviv : Intelekt-Zahid, 2004.
Published
2020-10-05