VIBRATION OF THE COMPELLED FLUCTUATIONS OF THE MAST
Abstract
In work the theoretical problem – compelled cross – section mast fluctuation is considered (Core) which makes small harmonious fluctuations (vibration) with any amplitude in Direction, perpendicular its axis, thus there is a stationary sound field. Usually under The term a core in acoustics name material weight of the extended cylindrical form. If the core makes the compelled fluctuations, i.e. works on a bend, as required function Ordinate of the deformed axis of a core with absciss and at the moment of time . For problem decisions we consider, that one end of a core is fixed, then regional conditions will be Immovability of a core and vertical position of a tangent. Preliminary we find the own Values and functions of the equation of free fluctuations of a core for two variables and . Physical The problem about core fluctuations is reduced to a mathematical problem: to find the decision of the equation, which Would satisfy to entry conditions and boundary conditions. Having spent a number of mathematical actions, in Result have received the formula of amplitude of the compelled cross-section fluctuations of a mast (in the form of the circular The cylinder) under the influence of harmonious force of frequency . In the conclusion in the environment of Mathcad 15 were calculated Dependences on time of deviations for three various sections of a steel mast and at three Various frequencies.
References
Конвенция о труде в морском судоходстве (КТМС) №186 (англ. : Maritime Labour Convention (MLC)). – Женева, 2006/2013. – 239 с.
Кодекс безопасной практики для моряков торговых судов (англ. : Code of Safe Working Practices for Merchant Seamen). Глава 34. Шум, вибрация и другие физические тела (англ. : Noise, vibration and other physical agents). – Лондон, 2010. – 545 с.
Стретт Дж. В. (Лорд Рэлей). Теория звука. Т. 1 – М. : Гос. издат. тех. теор. лит., 1955. – 503 с.
Корнеев С. А. Техническая теория стержней. Применение обобщённых функций для решения задач сопротивления материалов : учеб. пособие / С. А. Корнеев. – Омск : Изд‐во ОмГТУ, 2011. – 83 с.
Варданян Г. С. Сопротивление материалов с основами теории упругости и пластичности : учебник / Г. С. Варданян, В. И. Андреев, Н. М. Атаров, А. А. Горшков. – М., 1995. – 567 с.
Смирнов В. И. Курс высшей математики. Т. 2. / В. И. Смирнов. – М. : Гос. издат. тех. теор. лит., 1956. – 628 с.
Кошляков Н. С. Уравнения в частных производных математической физики / Н. С. Кошляков, Э. Б. Глинер, М. М. Смирнов. – М. : Высшая школа, 1970. – 712 с.
Волков Е. А. Численные методы : учебное пособие для вузов / Е. А. Волков. – М. : Наука, 1987. – 248 с.