FILTRATION OF UNDESIRED SIGNALS BY THE ROBUST CONTROLLER IN THE ROTOR FLUX-LINKAGE CONTROL SYSTEM
https://doi.org/10.33815/2313-4763.2019.1.20.122-131
Abstract
Purpose. The aim of the work is to theoretically study undesired signals being filtered by a stabilizing Н∞-suboptimal robust controller in the rotor flux-linkage control system of an asynchronous motor. Methodology. To make the research, the mathematical model of the rotor flux-linkage channel of the vector control system of an asynchronous electric drive with parametric uncertainty has been applied. The transfer function of the Н∞-suboptimal controller has been calculated using the mixed sensitivity method. This transfer function has been used to design a structural scheme of a flux-linkage control system with single feedback with a summing device of desired and undesired signals. Results. Computer simulation of the transfer function of the Н∞-suboptimal controller has been carried out. A structural scheme of a robust control system for rotor flux-linkage with single feedback with a summing device of desired and undesired signals has been built in the Simulink application. The curves of the flux-linkage transient processes for various values of the amplitude of undesired signal have been obtained. The analysis of undesired signal filtering by a robust controller has been carried out. Originality. The method for filtering undesired signal by a Н∞-suboptimal robust controller in the rotor flux-linkage control system of an asynchronous motor is developed. The method allows to evaluate the accuracy of the range of undesired signals filtered by the controller from the calculated flux-linkage transient process curve. The rotor flux-linkage transient processes simulation results prove the high accuracy of flux-linkage stabilization and the low sensitivity of the system to undesired signals while limiting their range to acceptable values. Practical value. The application of designed method allows to carry out calculations to clarify the tolerances for undesired signals filtering by the Н∞-suboptimal robust controller in the rotor flux-linkage control system of an asynchronous motor.
References
doi: 10.20998/2074-272X.2017.1.04.
Khlopenko, I. N., Rozhkov, S. A. & Khlopenko, N. J. (2018). Stability and accuracy of the robust system for stabilizing the rotor flux-linkage of an asynchronous electric drive at random variations of the uncertain parameters within the specified boundaries. Electrical engineering & electromechanics, 4, 35–39. doi: 10.20998/2074-272X.2018.4.06.
Nikiforov V. O. (2003). Adaptivnoe i robastnoe upravlenie s kompensatsiei vozmushchenii. Saint Petersburg : Nauka Publ.
Tsykunov A. M. (2012). Robastnoe upravlenie s kompensatsiei vozmushchenii.
Moscow : Fizmatlit Publ.
Tsykunov A. M. (2014). Robust tracking system with compensation of perturbations and noises. Vestnik AGTU. Ser.: Upravlenye, vychyslytelnaia tekhnyka i informatyka, 1, 54–61.
Francis, B. A. & Zames, G. (1984). On H∞-optimal sensitivity theory for SISO feedback systems. IEEE Trans. Automat. Control, Vol. 29, 9–16.
Glover K. (1986). Robust stabilization of linear multivariable systems: relation to approximation. Intern. J. Control. Vol. 43, 3, 741–766.
Doyle, J. C., Glover, K., Khargonekar, P. P. & Francis, B. A. (1989). State-space solution to standard H2 and H∞ control problems. IEEE Trans. Automat. Control. Vol. 34, 8, 831–847.
Egupov N. D. (2002). Metody robastnogo, neiro-nechetkogo i adaptivnogo upravleniia. Moscow : Publishing House of the MSTU named after N.E. Bauman.
Chestnov V. N. (2015). H ∞-approach to controller synthesis under parametric uncertainty and polyharmonic external disturbances. Automation and Remote Control, 6, 112–127.
Richard, Y., Chiang, R., Michael, G., Safonov, M. (1998). MATLAB: Robust Control Toolbox. User’s Guide. Version 2. Retrieved from http://www.mathworks.com.
Balandin, D. V. & Kogan, M. M. (2007). Sintez zakonov upravleniia na osnove lineinykh matrichnykh neravenstv. Moscow : Nauka Publ.
Kurzhanskyi, A. B. (1977). Upravlenye y nabliudenye v uslovyiakh neopredelennosty. Moskva : Nauka.
Chernousko F. L. (1988). Otsenyvanye fazovoho sostoianyia dynamycheskoi systemy. Moskva : Nauka.
Nazin, S. A., Poliak, B. T. & Topunov M. V. (2007). Podavlenie ogranichennykh vneshnikh vozmushchenii s pomoshch’iu metoda invariantnykh ellipsoidov. Avtomatika i telemekhanika, 3, 106–125.
Utkyn, V. Y. (1981). Skolziashchye rezhymy v zadachakh optymyzatsyi i upravlenyia. Moskva : Nauka.
Emelianov, S. V. (1967). Systemy avtomatycheskoho upravlenyia s peremennoi strukturoi. Moskva : Nauka.
Meerov, M. V. (1967). Syntez struktur system avtomatycheskoho upravlenyia vysokoi tochnosty. Moskva : Nauka.
Izosymov, D. B. & Ryvkyn, S. E. (1993). Skolziashchyi rezhym v elektropryvode : preprynt. Moskva : Instytut problem upravlenyia.
Ryvkin, S. E. (2009). Skolziashchye rezhymy v zadachakh upravlenyia avtomatycheskym synkhronnym elektropryvodom. Moskva : Nauka.
Vishnevskiy, V. I., Lazarev, S. A. & Mityukov, P. V. (2011). Тhe adaptive sliding-mode speed observer for sensorless induction motors drives. Bulletin of the Chuvash University, 3, 52–59.
Polilov, E. V., Batrak, A. M. & Rudnev, E. S. (2010). Practical implementation of algorithms in a discontinuous system of vector control synchronous motors. Bulletin of the Kremenchuk State University n.a. Mikhail Ostrogradsky, 3, 30–36.
Kuznetsov, B. Y., Nykytyna, T. B, Kolomyets, V. V. & Khomenko, V. V. (2015). Issledovanye vlyianyia nelyneinostei i varyatsyy parametrov obyekta upravlenyia na dynamycheskye kharakterystyky elektromekhanycheskykh slediashchykh system. Visnyk NTU «KhPI», 12 (1121), 68–71.
Nesenchuk, A. A., Opeiko, O. F. & Odnolko, D. S. (2014). Dynamics simulation and calculation of robust parameters for the electric drive control system on the basis of the root locus portraits. Artificial Intelligence, 3, 90–103.
Peresada, S. M., Kovbasa, S. N. & Bovkunovich, V. S. (2010). Rough vector control torque and flux induction motor. Tekhnichna elektrodynamika, 1, 60–66.
Polilov, E. V., Rudnev, E. S., Skorik, S. P. (2010). Synthesis of robust control algorithms for a synchronous electric motor means H∞-theory. Transactions of Kremenchuk Mykhaylo Ostrogradskiy State University, 4/2010 (63), part 3, 15–20.
Elistratov, V. D. & Ilina, A. G. (2016). Robust control by servo drive with non-rigid load with H-infinity norm limitation. Vestnik of Astrakhan State Technical University. Series: Marine Engineering and Technologies, 4, 89–94.
Poliakov, V. N. & Ishmatov, Z. Sh. (2015). Robastnaia systema rehulyrovanyia tokov elektropryvodov s mashynoi dvoinoho pytanyia. Elektropryvody peremennoho toka
(EPPT 2015) : trudy mezhdunarodnoi shestnadtsatoi nauchno-tekhnycheskoi konferentsyy. Ekaterynburh, 89–94.
Nykytyna, T. B., Kolomyets, V. V., Tytarchenko, M. O. & Khomenko V. V. (2013). Razrabotka i eksperymentalnoe issledovanye stenda stokhastycheskoi dvukhmassovoi elektromekhanycheskoi systemy. Vestnyk NTU «KhPY», 19 (992), 113–120.
Chaikovskyi M. M. (2012). Syntez suboptymalnoho anyzotropyinoho stokhastycheskoho robastnoho upravlenyia metodamy vypukloi optymyzatsyy. Extended abstract of candidate’s thesis. Moskva.
Nikitina T. B. (2013). Mnogokriterial’nyj sintez robastnogo upravlenija mnogomassovymi sistemami. Kharkiv : Kharkiv National Automobile and Highway University Publ.
Kuznetsov, B. Y., Nykytyna, T. B., Kolomyets, V. V. & Khomenko, V. V. (2014). Mnohokryteryalnyi syntez stokhastycheskoho robastnoho upravlenyia mnohomassovymy elektromekhanycheskymy systemamy na osnove stokhastycheskoi multyhennoi optymyzatsyy. Vestnyk NTU «KhPY», 62 (1104), 77–86.
Nykytyna, T. B., Kolomyets, V. V., Tytarchenko, M. O. & Khomenko, V. V. (2013). Razrabotka y eksperymentalnoe issledovanye stenda stokhastycheskoi dvukhmassovoi elektromekhanycheskoi systemy. Vestnyk NTU «KhPY», 19 (992), 113–120.
Teslenko V. A. (2007). Vlyianye pomekh na izmerytelnye tsepy. Promyshlennye izmerenyia, kontrol, avtomatyzatsyia, dyahnostyka, 1, 52–56.