MODEL OF ATTENTION DISTRIBUTION OF THE NAVIGATOR WHILE KEEPING A NAVIGATIONAL WATCH

https://doi.org/10.33815/2313-4763.2019.2.21.026-034

  • P. Nosov
  • А. Ben
  • H. Nosova
  • V. Novikov
Keywords: model of attention distribution, human factor, navigator, catastrophe forecasting, maritime safety

Abstract

The aim of the article is to develop a formal model and its geometric approximation that allows to describe the logic of the distribution of attention of the navigator while maneuvering including the possibility of discrete forecasting. To build this model, an analysis of international maritime regulations and situations was carried out, which allowed to determine the formal structure and logical principles of the model close to real situations while solving navigation problems.

The article provides formal approaches that take into account individual factors of the navigator’s predisposition to the perception of navigational situations and the associated dangers. A geometric approximation of the model in the form of a Cartesian cube divided into eight quadrants with local coordinate systems is proposed. This made it possible to combine data on the distribution of attention relative to eight objects according to STCW-78. Formal and logical constructions that allow to separate the conditions of the attention distribution model depending on the stage of the execution of a navigational task within the cycle have been developed.  In this regard, the approaches for predicting model states using Markov discrete circuits in the conditions of continuous time have been proposed. Automation of the forecast made it possible in real time to obtain data about the speed of perception and processing of navigational data for transition to subsequent states in order to reduce the likelihood of catastrophic situations related to sea transport.

References

IMO. STCW-78/95 Convention, 1995.
Nosov P. S., Ben A. P., Matejchuk V. N., Safonov M. S. (2018) Identification of “Human error” negative manifestation in maritime transport. Radio Electronics, Computer Science, Control. Zaporizhzhia National Technical University, № 4 (47), 204–213. DOI: 10.15588/1607-3274-2018-4-20.
Popovych, I. S. & Blynova, O. Ye. (2019). The Structure, Variables and Interdependence of the Factors of Mental States of Expectations in Students’ Academic and Professional Activities. The New Educational Review, 55(1), 293–306. DOI:10.15804/tner.2019.55.1.24.
Berg, H. P. (2013). Human Factors and Safety Culture in Maritime Safety he. International Journal on Marine Navigation and Safety of Sea Transportation, Vol. 7, Number 3, 343-352. DOI: 10.12716/1001.07.03.04.
Zinchenko S., Nosov P., Mateichuk V., Mamenko P. & Grosheva O. (2019). Use of navigation simulator for development and testing ship control systems. MNPK pamiati profesoriv Fomina Yu. Ya. i Semenova V. S. (FS-2019), 24 – 28 kvitnia 2019, Odesa – Stambul – Odesa,
350–355.
Nosov, P. S., Palamarchuk, I. V., Safonov, M. S., Novikov, V. I. (2018). Modeling the manifestation of the human factor of the maritime crew. Dnipropetrovsk National University of Railway Transport named after Academician V. Lazaryan, N. 5 (77), 82–92. doi: 10.15802/stp2018/ 147937.
Rolf, J., Bye, Asbjørn & L. Aalberg (2018). Maritime navigation accidents and risk indicators: An exploratory statistical analysis using AIS data and accident reports. Reliability Engineering & System Safety, Vol. 176, 174–186, DOI: 10.1016/j.ress.2018.03.033.
Popovych, I. S. (2014). Social expectations – a basic component of the system of adjusting of social conduct of a person. Australian Journal of Scientific Research, 2(6), 393–398. Retrieved from http://ekhsuir.kspu.edu/ handle/123456789/3281
Guidance notes on safety culture and leading indicators of safety (2012). American Bureau of Shipping (ABS), Houston, 74.
Nosov, P., Ben, A., Safonova, A. & Palamarchuk, I. (2019). Formal going approaches to determination periods of intuitional behavior of navigator during supernumerary situations. Radio Electronics, Computer Science, Control, Vol. 2 (49), 140–150. doi: 10.15588/1607-3274-2019-2-15.
Krisilov, V. A. (2004). Informacionnaya tekhnologiya prinyatiya resheniyj v zadachakh ASU na baze kolichestvennoyj integraljnoyj ocenki slozhnihkh objhektov. Candidate’s thesis. Odessa : Odesskiyj nacionaljnihyj politekhnicheskiyj un-t.
Albert Einstein. (1916). Die Grundlage der allgemeinen Relativitätstheorie. Annalen der Physik. Vol. 354, N. 7. 769–822. DOI:10.1002/andp.19163540702.
Landau, L. D., Lifshic, E. M. (1967). Teoriya polya. Moskva : Nauka.
Tanguiane, A. S. (1990). A model of collective representation of a council type. Math. modeling, 2: 5, 60–103.
Jech, T. (1997). Set theory corr. ed. – Berlin; Heidelberg; New York; Barcelona; Budapest; Hong Kong; London; Milan; Paris; Santa Clara; Singapore; Tokyo; Springer. 243. DOI: 10.1007/3-540-44761-X.
Jaynes, E. T. (2003). Probability theory the logic of science / edited by G. Larry Bretthorst. Published in the United States by Cambridge University Press, New York.
Keljbert, M. Ya., Sukhov, Yu. M. (2010). Veroyatnostj i statistika v primerakh i zadachakh : Markovskie cepi kak otpravnaya tochka teorii sluchayjnihkh processov i ikh prilozheniya. Moskva : MCNMO.
Kolmogorov, A. N. (1974). Osnovnihe ponyatiya teorii veroyatnosteyj. Teoriya veroyatnosteyj i matematicheskaya statistika. Moskva
Published
2019-12-05